Topic Test 1 Mark Scheme

Pythagoras' Theorem - Foundation

Q	Answer	Mark	Comments
1	$c=\sqrt{a+b}$	B1	
2	$\sqrt{22^{2}-15^{2}}$	M1	
	[16, 16.1]	A1	
3	$\sqrt{11^{2}+18^{2}}$	M1	
	[21, 21.1]	A1	
4	$\sqrt{9^{2}+40^{2}}$	M1	
	41	A1	
	90	B1ft	ft their hypotenuse if M awarded
5	$\sqrt{2.8^{2}+1.2^{2}}$	M1	
	[3, 3.05]	A1	
	[0.95, 1.0]	A1	ft 4 - their hypotenuse if M awarded
6	$330 \div 60 \times 2$	M1	
	11	A1	
	$\sqrt{60^{2}+\text { their } 11^{2}}$	M1	
	61	A1ft	ft their 11 if both Ms awarded

Q	Answer	Mark	Comments

7	$\sqrt{\mathbf{1 0}^{2}-\mathbf{6}^{2}}$	M1	
	8	A1	
	(side of square $=)(16+$ their 8$) \div 4$ or 6	M1	
	Area square $=$ their 6^{2} or 36 or area triangle $=0.5 \times$ their 8×6 or 24	M1	
	A1	oe	

